On Efficient Sketching Algorithms

Praneeth Kacham

Thesis Committee

David Woodruff (chair)

Pravesh Kothari

Richard Peng

Rasmus Pagh (University of Copenhagen)

Introduction

- Conventional algorithms are bad at handling large datasets
 - Do not utilize sparsity
 - Assume arbitrary efficient access
- How to construct algorithms that work on large datasets?

4

Three Settings

Classic Setting

- Inputs fit in memory
- Algorithms that run as fast as possible

Distributed Setting

- Inputs are distributed over multiple servers
- Coordinator model and arbitrary topologies
- Protocols that use a low amount of communication

Three Settings

Streaming Setting

- Inputs are long streams defining large inputs
- Additive updates or row arrival models
- Small space algorithms that update their state quickly

A mix of streaming and distributed settings is also studied e.g., Distributed Functional Monitoring

Sketching

- Techniques developed over last 20 years to handle large datasets
- Shrink the large dataset into a small dataset
- Efficiently perform computation on the small dataset

How is Sketching Useful?

Classic Setting

- Compute a sketch of the data quickly
- Run time-intensive algorithms on much smaller sketch instead of on the full dataset

Distributed Setting

- Compute a sketch of the local dataset and send it to the coordinator
- Smaller the sketch, lower the communication required

Streaming Setting

 If the sketch construction is efficiently updateable, modify the sketch on each update to the underlying dataset

Distributed Setting

- General point-to-point communication with twice the communication + $\log_2 s$ bits
- We also study arbitrary graph topologies in the thesis

Turnstile Streaming

- Initialize $x \leftarrow 0 \in \mathbb{R}^n$
- On update (i, Δ) :
 - Set $x_i \leftarrow x_i + \Delta$
- Answer queries about x using small space
 - $\max_i |x_i| = ||x||_{\infty}$
 - $\sum_{i} |x_{i}|^{p}$ (F_{p} moments)
 - Useful to characterize the distribution
 - $p \in (0,2)$ to approximate the entropy of the distirbution

X

Updates: (i_1, Δ_1) (i_2, Δ_2) ... (i_m, Δ_m)

A Major Technique: Linear Sketching

- Apply a randomized linear transform
 - CountSketch [Clarkson and Woodruff '13], OSNAP [Nelson and Nguyen '13], SRHT [Tropp '10, Ailon and Chazelle '06], ...

ullet S consolidates information into the "sketch"

(Can typically be handled with low communication using pseudorandom generators)

How is Sketching Useful?

Turnstile Streaming

- Implicitly initialize a sketching matrix ${\cal S}$
 - Maintain $S \cdot x$ in the stream
- Initialize $sk(x) \leftarrow 0$
- When $x[i] \leftarrow x[i] + \Delta$
 - Retrieve the i-th column S_{*i}
 - Update $sk(x) \leftarrow sk(x) + (S_{*i}) \cdot \Delta$
- At all times: $sk(x) = S \cdot x$
- Extract "information" about x from sk(x) at the end

$$x[1] S_{*1} + \cdots + x[n] S_{*n}$$

How is Sketching Useful?

Turnstile Streaming

- S can be stored using small space and m small \Rightarrow Small space streaming algorithms!
- S_{*i} can be retrieved quickly \Rightarrow Fast **update** times
 - We will discuss how to obtain space-optimal algorithms with fast update times

Complexity Measures

- Time complexity is not the only thing!
- Broadly, we care about the following:
 - Time Complexity: Total time, Update time, ...
 - Space Complexity
 - Communication Complexity
 - Randomness Complexity

Optimal Communication Bounds for Classic Functions in the Coordinator Model and Beyond

with Hossein Esfandiari, Vahab Mirrokni, David Woodruff and Peilin Zhong [STOC'24]

Communication Model

Previous Work

Algorithms:

- Cormode, Muthukrishnan and Yi '11 : $\tilde{O}(n^{1-2/p} \cdot \operatorname{poly}(s/\varepsilon))$ bits
- Woodruff and Zhang '12 : $\tilde{O}(s^{p-1}/\varepsilon^{\Theta(p)} \cdot \operatorname{poly}(\log n))$
- Kannan, Vempala and Woodruff '14 : $\tilde{O}(s^p/\varepsilon^2 \cdot \operatorname{poly}(\log n))$
 - For general functions $O(s^2 \cdot c_{f,s} / \varepsilon^2 \cdot \operatorname{poly}(\log n))$

Lower Bounds:

- Woodruff and Zhang '12 : $\Omega(s^{p-1}/\varepsilon^2)$ (s-BTX problem)
- Kannan, Vempala and Woodruff '14 : $\Omega(c_{f,s}/arepsilon)$ (s-Player Promise Set-Disjointness)

Distributed functional monitoring

The Parameter $C_{f,S}$

$$f(y_1 + \dots + y_s) \le c_{f,s}(f(y_1) + \dots + f(y_s))$$
 for all y_i

- Individual function values clue in about the function value of the sum
- As $c_{f,s}$ grows, we expect the protocols to require more communication
 - The lowerbound $\Omega(c_{f,s}/\varepsilon)$ shows it is indeed the case

A New Parameter and Our Result

$$f(y_1 + \dots + y_s) \le \frac{c_f[s]}{s} \left(\sqrt{f(y_1)} + \dots + \sqrt{f(y_s)} \right)^2$$

•
$$c_{f,s} \leq c_f[s] \leq s \cdot c_{f,s}$$

$$f(y_1 + \dots + y_s) \le c_{f,s}(f(y_1) + \dots + f(y_s))$$
 for all y_i

- For $f(y) = y^p$, $c_f[s] = s^{p-1} = c_{f,s}$
- Theorem: Given a super-additive function f that is "approximately invertible", there is a **two round** protocol using $O(c_f[s] \cdot \text{polylog}(n)/\varepsilon^2)$ bits of communication to approximate $\sum_i f(x_i)$ up to $1 \pm \varepsilon$
- $\Omega(c_f[s]/\varepsilon^2)$ lower bound for a restricted class of functions
 - Suggests $c_f[s]$ captures the complexity better

Key Observations

•
$$\max_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \equiv \mathbf{e}^{-1} (\sum_{i} \lambda_{i})$$

• Define
$$\lambda_i = x_i^p = (\sum_{j \in [s]} x_i(j))^p$$

•
$$median(e^{-1} \cdot \sum_{i} x_{i}^{p}) = \sum_{i} x_{i}^{p}/(\ln 2)$$

- Can we compute $i^* = \operatorname{argmax}_i \mathbf{e}_i^{-1} \cdot x_i^p$ in one round?
 - Can then compute $\mathbf{e}_{i^*}^{-1}x_{i^*}^p = \mathbf{e}_{i^*}^{-1}\left(\sum_j x_{i^*}(j)\right)^p$ in the second round
- Useful property:
 - $\sum_{i} \mathbf{e}_{i}^{-1} \lambda_{i} \leq O(\log^{2} n) \max_{i} \mathbf{e}_{i}^{-1} \lambda_{i}$ -- the largest value is significant

Global

Local

$$\mathbf{e}_n^{-1} x_n(s)^p$$

High Level Ideas

- All servers sample the **same** exponential random variables $\mathbf{e}_1, \dots, \mathbf{e}_n$
 - Can be derandomized using pseudorandom generators
- We want to find $i^* = \operatorname{argmax}_i \mathbf{e}_i^{-1} (\sum_j x_i(j))^p$
- Server j computes the vector $(\mathbf{e}_1^{-1}x_1(j)^p,\dots,\mathbf{e}_n^{-1}x_n(j)^p)$ $i\propto \mathbf{e}_i^{-1}x_i(j)^p$
- Then server j samples $M = O(s^{p-2} \cdot \log^3 n)$ coordinates independently
- Send all the sampled coordinates to the central server -- Does it receive i^st ?

Receiving the Top Coordinate

$$\Pr[\text{Not receiving } i^*] = \prod_{j} \left(1 - \frac{\mathbf{e}_{i^*}^{-1} x_{i^*}(j)^p}{\sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^p} \right)^{O(s^{p-2} \cdot \log^3 n)}$$

$$\leq \exp\left(-s^{p-2} \log^3 n \sum_{j} \frac{\mathbf{e}_{i^*}^{-1} x_{i^*}(j)^p}{\sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^p} \right) \qquad (1 - x \leq \exp(-x))$$

$$\leq \exp\left(-s^{p-2} \log^3 n \cdot \frac{\mathbf{e}_{i^*}^{-1} (\sum_{j} x_{i^*}(j)^{p/2})^2}{\sum_{j} \sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^p} \right) \qquad \left(\sum_{i} \frac{a_i}{b_i} \geq \frac{(\sum_{i} \sqrt{a_i})^2}{\sum_{i} b_i} \right)$$

Receiving the Top Coordinate (Contd.)

$$\leq \exp\left(-s^{p-2}\log^{3}n \cdot \frac{\mathbf{e}_{i^{*}}^{-1}(\sum_{j} x_{i^{*}}(j)^{p/2})^{2}}{\sum_{j} \sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^{p}}\right)$$

$$\left(\sum_{j} x_{i*}(j)^{p/2}\right)^{2} \ge \frac{1}{s^{p-2}} \left(\sum_{j} x_{i*}(j)\right)^{p} = \frac{1}{s^{p-2}} \left(x_{i*}\right)^{p} \qquad (c_{f}[s] = s^{p-1})$$

$$\sum_{i} \sum_{i} \mathbf{e}_{i}^{-1} x_{i}(j)^{p} \leq \sum_{i} \mathbf{e}_{i}^{-1} x_{i}^{p} \leq (C \log^{2} n) \cdot \mathbf{e}_{i^{*}}^{-1} x_{i^{*}}^{p}$$

Super-additivity of $f(y) = y^p$ largeness of $\mathbf{e}_{i^*}^{-1} x_{i^*}^p$

 $\Pr[\text{Not receiving } i^*] \leq 1/\text{poly}(n)$

Computing i^*

- The argument shows that the central server receives i^*
- Can send all $O(s^{p-1} \cdot \log^3 n)$ coordinates to all servers and ask for $x_i(j)$
 - Requires a total of $O(s^p \cdot \log^3 n)$ communication
 - Coordinator needs to find a small set S such that $i^* \in S$
 - We show such S with $|S| \le \text{polylog}(n)$ can be computed by computing approximations to $\mathbf{e}_i^{-1} x_i^p$ for all i by using the sampled coordinates and their values at the sampled servers
 - Critically uses the properties that individual contribution of i^* is quite large and that $\mathbf{e}_{i^*}^{-1}x_{i^*}^p$ is significant fraction of $\sum_i \mathbf{e}_i^{-1}x_i^k$
 - Ask the servers for $x_i(j)$ for only $i \in S$ -- $O(s \cdot \text{polylog}(n))$ communication

Extending to general functions f

- \bullet Requirements for f
 - Super additivity: $f(x) + f(y) \le f(x + y)$
 - A multiplicative approximation for f(x) can be used to obtain a multiplicative approximation for f
- The procedure extends and gives a protocol with $O(c_f[s] \cdot \text{polylog}(n)/\varepsilon^2)$ communication

Results

$$f(y_1 + \dots + y_s) \le \frac{c_f[s]}{s} \left(\sqrt{f(y_1)} + \dots + \sqrt{f(y_s)} \right)^2$$

- A protocol using a $O(c_f[s] \cdot \operatorname{polylog}(n)/\varepsilon^2)$ bits of communication
 - For $p \ge 2$, protocol using $O(s^{p-1} \cdot \operatorname{polylog}(n)/\varepsilon^2)$ bits -- optimal up to polylog factors
- The $\Omega(s^{p-1}/\varepsilon^2)$ lower bound can be extended to general functions to show $\Omega(c_f[s]/\varepsilon^2)$ lower bound
 - Requires that $c_f[s]$ is realized for $y_1 = y_2 = \cdots = y_s$

Fast and Space Optimal Streaming Algorithms

with Mikkel Thorup, Rasmus Pagh and David Woodruff [FOCS '23]

Turnstile Streaming

- Initialize $x \leftarrow 0 \in \mathbb{R}^n$
- On update (i, Δ) :
 - Set $x_i \leftarrow x_i + \Delta$
- Answer queries about x using small space
 - $\max_{i} |x_{i}|$
 - $\sum_{i} |x_i|^p$ (F_p moments)

Updates: (i_1, Δ_1) (i_2, Δ_2) ... (i_m, Δ_m)

 χ

28

Our Results

- Can we obtain space optimal streaming algorithms with fast update times?
 - Yes! For many problems.
- Theorem: For p>2, there is an algorithm using optimal $\tilde{O}(n^{1-2/p})$ bits of space and an update time of O(1) to approximate $F_p(x)$ up to constant factors
 - Improves on poly(log n) update time of earlier works such as [Andoni, Krauthgamer, Onak '10]

Andoni's Algorithm

• Max stability $\Longrightarrow \max(\mathbf{e}_1^{-1/p} | x_1 |, ..., \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p(x)^{1/p}$

$$||Ex||_{\infty} \approx F_p(x)^{1/p}$$

If
$$m = \Theta(n^{1-2/p} \log n)$$
, then $||SEx||_{\infty} \approx F_p(x)^{1/p}$

Implementing in a Stream

- S has a concise description using $O(\log n)$ -wise independent hash functions
- ullet We need a way to define the matrix E that preserves the properties we want
 - We cannot use independent $\mathbf{e}_1, \dots, \mathbf{e}_n \Omega(n)$ space is required
 - Idea: Use a pseudorandom string to generate e_1, \ldots, e_n
 - Andoni uses the PRG of Nisan and Zuckerman
 - Slow to retrieve an arbitrary e_i

Preserving Properties via Nisan's PRG

r = 0110...

- Consider the following algorithm:
 - Uses w bits of space to store its state ($\leq 2^w$ states)
 - Makes a single-pass on the uniform random string

- Nisan gave a PRG to "fool" such algorithms by replacing a fully random string with pseudorandom string generated using a short uniform random seed
- Indyk gave a recipe to fool turnstile streaming algorithms using such PRGs

Nisan's PRG

- $r \sim \{0,1\}^\ell$ and $h_1,\ldots,h_t\colon\{0,1\}^\ell \to \{0,1\}^\ell$ 2-wise independent
- ullet Seed length of $O(t \cdot \mathscr{C})$
- $2^t \cdot \mathcal{E}$ length string at the bottom
- If $t, w \le c \cdot \ell$, the PRG fools an algorithm which uses w bits of space
- Compute block with t hash evaluations
 - Keep t and ℓ small
- Direct derandomization would mean slow update times

Preserving Properties via Fooling Analysis Algorithms

• We want to sample random variables ${\bf e}_1, \dots, {\bf e}_n$ using a small amount of randomness while preserving

$$\max(\mathbf{e}_1^{-1/p} | x_1 |, \dots, \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p^{1/p}$$
Close in TV distance suffices

- Consider the simple algorithm parameterized by x
 - $s \leftarrow 0$
 - For i = 1, ..., n:

•
$$s \leftarrow \max(s, |x_i| \cdot g(r_i)^{-1/p})$$

If r_i is a block of uniform random bits, $g(r_i)$ has exponential distribution.

Preserve the distribution of the output of this small space algorithm

Derandomizing using Nisan's PRG

- Need to fool $O(\log n)$ space algorithm and require poly(n) length bitstring
 - Require $l, t = \Omega(\log n)$
 - Seed of size $O(\log^2 n)$
 - Need to evaluate $O(\log n)$ hash functions to retrieve a block
- We use $\Omega(n^{1-2/p})$ bits to store the sketch
 - Can we use a larger seed for the PRG to decrease $O(\log n)$ hash evaluations?

HashPRG: Our Construction

 Two hash functions per level • Switching $h_1^{(1)}$ and $h_1^{(2)}$ just **reorders** blocks! • Distribution of strings is symmetric

HashPRG

- Why stop at two children per node?
- We show any branching factor works
- Getting to any block of the string is quicker
 - Need to spend more space to store hash functions
 - Time vs space tradeoff

Key Ideas

- We don't need to preserve the distribution of the sketch
 - By more carefully preserving only necessary properties of random variables, we can get by with much weaker PRGs
 - Fast hash function evaluation
- Increase branching factor
 - Fewer hash functions to evaluate for retrieval
- Symmetry of the distribution of pseudorandom strings allows us to derandomize more algorithms

Other Results

- Theorem: For $0 , can approximate <math>F_p(x)$ up to $1 \pm \varepsilon$ using optimal $O(\varepsilon^{-2} \log n)$ bits of space and $O(\log n)$ update time
 - Valid only for $\varepsilon < 1/n^c$
 - Improves on $O(\log^2 n \log \log n)$ update time of [KNPW '11]
- CountSketch: Given t and r, a streaming algorithm which can compute $\hat{x}[i]$ such that for $\alpha \leq 1$

$$\Pr[|x[i] - \hat{x}[i]| > \alpha \frac{||x||_2}{\sqrt{t}}] \le 2 \exp(-\alpha^2 r) + 1/\text{poly}(n)$$

- Obtained by derandomizing [Minton and Price '14]
- The algorithm uses $O(tr \log(n) + \log^2 n)$ bits of space
 - $O(r \log n)$ update time

Other Applications of Sketching

Classic

- Ridge Regression [KW, AISTATS '20], [KW, ICML '22]
- Dimensionality Reduction for Sum-of-Distances [FKW, ICML '21]
- Reduced Rank Regression [KW, COLT '21]
- Fast and Small Subspace Embeddings [CCKW, SODA '22]
- PolySketchFormer: Linear Time Transformers obtained via sketching Polynomial Kernels [KMZ, ICML '24]
- Lower Bounds for Adaptive Matrix Recovery [KW, NeurlPS '23]
- Fast algorithms for Schatten-p Low Rank Approximation [KW, '24]

Other Applications of Sketching

Streaming

- Geometric Streaming Algorithms for almost Low Rank Data [EKMWZ, ICML '24]
- Approximating the Top Eigenvector in Random Order Streams [KW '24]

Distributed

 Communication Efficient Algorithms in the Personalized CONGEST Model [EKMWZ, STOC '24]

Thank You!