On Efficient Sketching Algorithms

Praneeth Kacham

Thesis Committee

David Woodruff (chair)
Pravesh Kothari
Richard Peng

Rasmus Pagh (University of Copenhagen)

Introduction

e Conventional algorithms are bad at handling large datasets
e Do not utilize sparsity

e Assume arbitrary efficient access

e« How to construct algorithms that work on large datasets?

Three Settings

e Classic Setting
e |nputs fit in memory
e Algorithms that run as fast as possible
e Distributed Setting
e |nputs are distributed over multiple servers
o Coordinator model and arbitrary topologies

e Protocols that use a low amount of communication

Three Settings

e Streaming Setting
e |nputs are long streams defining large inputs
e Additive updates or row arrival models

o Small space algorithms that update their state quickly

A mix of streaming and distributed settings is also studied e.g., Distributed Functional
Monitoring

Sketching

e Techniques developed over last 20 years to handle large datasets

e Shrink the large dataset into a small dataset

o Efficiently perform computation on the small dataset

I —> (i) — Result for A

How is Sketching Useful?

e Classic Setting
e Compute a sketch of the data quickly

e Run time-intensive algorithms on much smaller sketch instead of on the full dataset

e Distributed Setting
e« Compute a sketch of the local dataset and send it to the coordinator \
o Smaller the sketch, lower the communication required

e Streaming Setting

This Talk

e |f the sketch construction is efficiently updateable, modify the sketch on each update to the
underlying dataset

Distributed Setting

Coordinator

T
K

Server1 Server 2

Server s

. A

e (General point-to-point
communication with twice the

communication + 10g, s bits

e \We also study arbitrary graph
topologies in the thesis

Turnstile Streaming

e |nitializex <« 0 € R”

e Onupdate (7, A) :
e Setx; <« x. + A
e Answer queries about x using small space

. maxi\xi| = HXHOO

* 2. 1x1" (F,moments)

o Useful to characterize the distribution

e p € (0,2) to approximate the
entropy of the distirbution

A Major Technique: Linear Sketching

e Apply arandomized linear transform

e CountSketch [Clarkson and Woodruff "13], OSNAP [Nelson and Nguyen "13],
SRHT [Tropp 10, Ailon and Chazelle '00], ...

S sk(A)

/
Sketching Matrix

e S consolidates information into the “sketch”

How is Sketching Useful?

Distributed Setting _ oot

Coordmator

. A

S . S

Server 1 Server 2 Server s

(Can typically be handled with low communication using pseudorandom generators)

10

How is Sketching Useful?

Turnstile Streaming
Implicitly initialize a sketching matrix .S
e Maintain $ - xin the stream
Initialize sk(x) « 0O
When x|i] <« x[i] + A
o Retrieve the i-th column S
o Update sk(x) « sk(x) + (Sx) - A
o Atalltimes:sk(x) =38 -x

o Extract "information" about x from sk(x) at the end

X[l] S>x<1 + o+ X[n] S*n

1

How is Sketching Useful? e—
Turnstile Streaming m { S

e S can be stored using small space and m small = Small space streaming
algorithms!

e 3:;can be retrieved quickly = Fast update times

o \We will discuss how to obtain space-optimal algorithms with fast update times

12

Complexity Measures

e Time complexity is not the only thing!

o Broadly, we care about the following:
e Time Complexity : Total time, Update time, ...
e Space Complexity
e Communication Complexity

e Randomness Complexity

13

Optimal Communication Bounds for Classic
Functions in the Coordinator Model and Beyond

with Hossein Esfandiari, Vahab Mirrokni, David Woodruff and Peilin Zhong [STOC'24]

Moment Estimation

Coordmator

// Estimate Z xV

More generally, Z f(x;)
l

> ()
Server 2 Server s

Server

Communication Model

Coordinator

Server 2

Server

Shared Randomness

e Minimize total communication
e Minimize number of rounds

Server s

> 0

16

Previous Work

Algorithms:

. Cormode, Muthukrishnan and Yi'11: O(n'=%? - poly(s/¢)) bits

- L6 Distributed functional monitoring

o Woodruff and Zhang 12 : O(s?~1/e®?) . poly(log n))

. Kannan, Vempala and Woodruff 14 : O(s”/&? - poly(log n))
. For general functions O(s” - Cr ! e - poly(log n))

Lower Bounds:

. Woodruff and Zhang 12 : Q(s?~1/&%) (s-BTX problem)

« Kannan, Vempala and Woodruff 14 : Q(cﬁ ./ €) (s-Player Promise Set-Disjointness)

17

The Parameter ¢,

Fry + - 439 < ¢ (fn) + - +f(y) forally,

e |ndividual function values clue in about the function value of the sum

* As ¢y grows, we expect the protocols to require more communication

* The lowerbound Q(cﬁ ./ €) showsi it is indeed the case

18

A New Parameter and Our Result

Cr N

(\/]@Jr +\/]@)2

Crs < CpIS] S 8- G JO+ -+ y) < e (fp) + -+ + 1)) forall y;

Forf(y) = ¥, ¢fls] = 577! = ¢,

JOp+ -+) <

\)

Theorem: Given a super-additive function fthat is "approximately invertible", there is a two round
protocol using O(cf [s] - polylog(n)/&?) bits of communication to approximate Zi f(x)uptol £ ¢

Q(cf [s]/€7) lower bound for a restricted class of functions

» Suggests ¢; | 5| captures the complexity better

19

Key Observations

Global

max, e; ', = e~ (2. A
° P — ANY4
Define 4; = x! (ZJE[S] x()))

median(e™! - 2. x0) = 2 xF/(In2)

—1

Can we compute i = argmax. €; -xf’ in one round?

p
 Canthencomputee . x;, = €. (Z X j)) in the second round

l
Useful property:

Zle /1 < 0(log n) max; e; 1/1 -- the largest value is significant

20

High Level ldeas

o All servers sample the same exponential random variables ey, ..., €,

e Can be derandomized using pseudorandom generators
. Wewantto find i* = argmax. ei_l(Zj x(j))F
o Server j computes the vector (el_lxl(e,e, 1)cn(7Y)
i o e lx(j)
e Then server] samples M = O(Sp_2 - 10g3 n) coordinates independently

« Send all the sampled coordinates to the central server -- Does it receive 1 *?

21

Receiving the Top Coordinate

1 . O(s”~%-1og’ n)
Co. € X;x(J)F
Pr[Not receiving i*] = H] — Z iy
iei_ Xi\J

J

1xz*(j)p

-2
< exp [—sp log” nz Z 1))

] (I —x < exp(—x))

< exp [_sz log” n -

i b;

-‘I(Z xi*(j)p/Z)Z Z a; (Zi\/ai)z
2. 2. €' x(j) 2

22

Receiving the Top Coordinate (Contd.)

e (2 X ()?)?
Z]‘ Zi ei_lxi(j)p

< exp [—Sp2 log’ n -

2 p
. 1 |] B
[in*(])p/z] = Sp_2 [le*(])] — Sp_2 (Xi*)p (Cf[S] — Sp 1)
J J

2 2 e; 'x(j) < Z ei‘lxl?’ < (Clog®n) - ei_*lei Super-additivity of f(y) = y”

—1] D
largeness of € . X

J

Pr[Not receiving i*] < 1/poly(n)

23

Computing i * i

o The argument shows that the central server receives i *

. Cansendall O(s”~! - log” n) coordinates to all servers and ask for x:(J)
» Requires a total of O(s” - log” n) communication
« Coordinator needs to find a small set S such that i* € §

« We show such S with | S| < polylog(n) can be computed by computing approximations to el._le’ for all 7 by
using the sampled coordinates and their values at the sampled servers

o Critically uses the properties that individual contribution of i* is quite large and that el;lefk IS significant
: —1 .k
fraction of) €;'x;

o Askthe servers forx.(j) foronlyi € § -- O(s - polylog(7)) communication

24

Extending to general functions f

« Requirements for f

o Super additivity : f(x) + f(y) < f(x + y)

« A multiplicative approximation for f(x) can be used to obtain a multiplicative
approximation for f

« The procedure extends and gives a protocol with O(Cf[S] . polylog(n)/ &%)
communication

25

cels]
Results fon + 43 < L (VoD + - +Vf(ys>)2

\)

A protocol using a O(cf[s] . polylog(n)/€?) bits of communication

e Forp > 2, protocol using O(s”~! - polylog(n)/e?) bits -- optimal up to
polylog factors

. The Q(sP~!/&£?) lower bound can be extended to general functions to show
Q(cf[s]/ £%) lower bound

« Requires that cf[s] isrealizedfory; = y, = - = y_

20

Fast and Space Optimal Streaming
Algorithms

with Mikkel Thorup, Rasmus Pagh and David Woodruff [FOCS '23]

Turnstile Streaming

n

e Initializex <« 0 € |
e Onupdate (7, A) :

o Answer queries about x using small
space

e Max | x; |
i

o Z | x. |” (F,, moments)
i

(15 Br)

28

Our Results

e Can we obtain space optimal streaming algorithms with fast update times?

e Yes! For many problems.

e Theorem: For p > 2, there is an algorithm using optimal O(7' =% bits of space and
an update time of O(1) to approximate F p(x) up to constant factors

e Improves on poly(log n) update time of earlier works such as [Andoni,
Krauthgamer, Onak 10}

29

Andoni's Algorithm

« Max stability = maX(el_l/p X],....e; P |x |) = e VPF (x)l/p
E

y S

Y1

Ym

|Exl, % F ()7

fm = @(n'~*?logn),then ||SEx|| .

~ 1/
~ F(x)"F

30

Implementing in a Stream

e S has a concise description using O(log n)-wise independent hash functions
« We need a way to define the matrix E that preserves the properties we want

« We cannot use independent e, ..., e, -- {2(n) space is required

n

e ldea: Use a pseudorandom string to generate e, ..., €,

e Andoni uses the PRG of Nisan and Zuckerman

e Slow to retrieve an arbitrary €;

31

Preserving Properties via Nisan's PRG

r=0110...
o Consider the following algorithm: oo £,
1
o o /
e Uses w bits of space to store its state (< 2" states) So QIA Rl
\“ S o’
o Makes a single-pass on the uniform random string \‘ : \10A

o Updates its state according to an arbitrary state transition table

e Nisan gave a PRG to "fool" such algorithms by replacing a fully random string with
pseudorandom string generated using a short uniform random seed

e Indyk gave a recipe to fool turnstile streaming algorithms using such PRGs

32

Nisan's PRG

er ~ {0,1}% and hy,...,h,: (0,1} > {0,1}¢ 2-wise independent

£
e Seed length of O(¢ - ©) —

2! . £ length string at the bottom

olf 1, < ¢ - £, the PRG fools
an algorithm which uses w

bits of space
o Compute block with 7 hash

evaluations

e Keep t and £ small

o Direct derandomization would ,(hy(1))
mean slow update times

Preserving Properties via Fooling Analysis Algorithms

« We want to sample random variables €, ..., €, using a small amount of randomness while

preserving y y y
max(e Plx|,....,e, " |x |) E{l/prp

Close in TV distance suffices

o Consider the simple algorithm parameterized by x

ry|r r

e 5 «— ()

Fori = 1 - If 7; is a block of uniform random bits,
S g(r;) has exponential distribution.

e § < max(s, |x;| - g(l’,-)_l/p)

e Preserve the distribution of the output of this small space algorithm

34

Derandomizing using Nisan's PRG

« Need to fool O(log n) space algorithm and require poly(72) length bitstring
e Requirel,t = Q(logn)
e Seed of size O(l()g2 n)
« Need to evaluate O(log n) hash functions to retrieve a block

. We use Q(n'~P) bits to store the sketch

« Canwe use a larger seed for the PRG to decrease O(log n) hash evaluations?

35

HashPRG : Our Construction

« Two hash functions per level -
r

« Switching hl(l) and hl(z) just reorders blocks!

KOROE) | | R2EDE)| | BORPe)| [hPRPw)

e Distribution of strings is symmetric

HashPRG

e \Why stop at two children per node?
o \We show any branching factor works
o Getting to any block of the string is quicker
e Need to spend more space to store hash functions

e Time vs space tradeoff

37

Key Ideas

e We don't need to preserve the distribution of the sketch

o By more carefully preserving only necessary properties of random variables, we
can get by with much weaker PRGs

e Fast hash function evaluation
e |Increase branching factor
e Fewer hash functions to evaluate for retrieval

o Symmetry of the distribution of pseudorandom strings allows us to derandomize
more algorithms

38

Other Results

e Theorem: For() < p < 2, can approximate F,(x) upto 1 £ £ using optimal O(e~%1og n) bits of space and
O(log n) update time

e Validonlyfore < 1/n°

e Improves on O(log? n log log 1) update time of [KNPW '11]

« CountSketch: Given ¢ and r, a streaming algorithm which can compute X[i] such that fora < 1

X[l

[

Pr[| x[i] — X[i]] > @] < 2exp(—a®r) + 1/poly(n)

e Obtained by derandomizing [Minton and Price "14]
« The algorithm uses O(tr log(n) + log? n) bits of space

« O(rlog n) update time

39

Other Applications of Sketching

e Classic

Ridge Regression [KW, AISTATS '20], [KW, ICML '22]
Dimensionality Reduction for Sum-of-Distances [FKW, ICML '21]
Reduced Rank Regression [KW, COLT '21]

Fast and Small Subspace Embeddings [CCKW, SODA '22]}

PolySketchFormer : Linear Time Transformers obtained via sketching Polynomial Kernels [KM/Z,
ICML '24]

Lower Bounds for Adaptive Matrix Recovery [KW , NeurlPS '23]

Fast algorithms for Schatten-p Low Rank Approximation [KW, '24]

40

Other Applications of Sketching

e Streaming
o Geometric Streaming Algorithms for almost Low Rank Data [EKMW/Z, ICML '24]
o Approximating the Top Eigenvector in Random Order Streams [KW '24]

e Distributed

o« Communication Efficient Algorithms in the Personalized CONGEST Model
[EKMW/Z, STOC '24]

41

Thank You!

